首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26349篇
  免费   4592篇
  国内免费   2818篇
化学   17632篇
晶体学   250篇
力学   1868篇
综合类   217篇
数学   3402篇
物理学   10390篇
  2024年   32篇
  2023年   573篇
  2022年   651篇
  2021年   830篇
  2020年   1089篇
  2019年   1005篇
  2018年   921篇
  2017年   884篇
  2016年   1286篇
  2015年   1216篇
  2014年   1469篇
  2013年   1977篇
  2012年   2370篇
  2011年   2447篇
  2010年   1641篇
  2009年   1595篇
  2008年   1741篇
  2007年   1497篇
  2006年   1371篇
  2005年   1162篇
  2004年   864篇
  2003年   680篇
  2002年   582篇
  2001年   498篇
  2000年   492篇
  1999年   609篇
  1998年   503篇
  1997年   507篇
  1996年   467篇
  1995年   458篇
  1994年   382篇
  1993年   342篇
  1992年   281篇
  1991年   251篇
  1990年   236篇
  1989年   184篇
  1988年   146篇
  1987年   124篇
  1986年   92篇
  1985年   94篇
  1984年   62篇
  1983年   50篇
  1982年   52篇
  1981年   22篇
  1980年   12篇
  1979年   2篇
  1976年   1篇
  1959年   1篇
  1957年   7篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2–5 min by a simple two‐solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering.

  相似文献   

992.
Thermal behavior of 1,2,3-triazole nitrate   总被引:1,自引:0,他引:1  
The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS ), the enthalpy of activation (ΔH ), and the free energy of activation (ΔG ) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is C\textp ( \textJ mol - 1 \text K - 1 ) = - 42.6218 + 0.6807T C_{\text{p}} \left( {{\text{J mol}}^{ - 1} {\text{ K}}^{ - 1} } \right) = - 42.6218 + 0.6807T (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H 50) is 9.16 cm.  相似文献   
993.
A novel converse dealloying method was developed to fabricate free-standing nanoporous silver (np-Ag). One remarkable characteristic of the new dealloying method is that inert component (Au) is selectively removed from Au–Ag alloys while active component (Ag) is left undissolved. Thiourea plays a key role in the formation of a free-standing porous Ag framework since it not only leads to anodic dissolution of Au component but also causes the surface passivation of Ag component. Because of the excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA), the as-prepared np-Ag materials can be directly used as working electrodes to detect TCA in the concentration range from 2.50 to 25.0 mM.  相似文献   
994.
The high-pressure thermal properties and their correlation with burning rates of the composite modified double base (CMDB) propellants containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz), a substitute of hexogen (RDX), were investigated using the high-pressure differential scanning calorimetry (PDSC). The results show that there is a main exothermal decomposition process with the heating of each propellant. High pressure can restrain the volatilization of NG, accelerate the main decomposition reaction, and make the reaction occur easily. High pressure can change the main decomposition reaction mechanism function and kinetics, and the control process obeys the rule of Avrami–Erofeev equation at high pressure and chemical reaction at normal pressure. However, the mechanism function can not be changed by the ballistic modifier. The correlation between PDSC characteristic values and burning rates was carried out and found that u and ( p  \Updelta H\textd / \Updelta T ) 1 / 2 \left( {p \, \Updelta H_{\text{d}} { / }\Updelta T} \right)^{ 1 / 2} keep a good linear relation, k u keeps a similar changing trend with u, and it can be used to study the effect of the ballistic modifier or the other component on the burning rates.  相似文献   
995.
Alkali catalytic hydrolysis of poly(vinyl acetate) (PVAc) grafting onto polyurethane film surface was a heterogeneous reaction. The hydrolysis was carried on the PVAc particle surface, and the concentration of the alkali in the system was tested by titration method. The kinetics of PVAc surface hydrolytic reaction was studied by simple second-order reaction model. From linear regression analysis of experimental data, we inferred that the activation energy (E a ) and pre-exponential factor (A) of PVAc surface hydrolytic reaction were 70.7 ± 0.2 kJ mol?1 and (5.7 ± 0.5) × 1012 kg mol?1 s?1, respectively. The results of transmission electron microscopy stated that the apparent hydrolytic degree was 2.1% when the surface of PVAc particle hydrolyzed absolutely.  相似文献   
996.
997.
Chiral binuclear gold(I) phosphine complexes catalyze enantioselective intermolecular hydroarylation of allenes with indoles in high product yields (up to 90 %) and with moderate enantioselectivities (up to 63 % ee). Among the gold(I) complexes examined, better ee values were obtained with binuclear gold(I) complexes, which displayed intramolecular AuI AuI interactions. The binuclear gold(I) complex 4c [(AuCl)2( L3 )] with chiral biaryl phosphine ligand (S)‐(−)‐MeO‐biphep ( L3 ) is the most efficient catalyst and gives the best ee value of up to 63 %. Substituents on the allene reactants have a slight effect on the enantioselectivity of the reaction. Electron‐withdrawing groups on the indole substrates decrease the enantioselectivity of the reaction. The relative reaction rates of the hydroarylation of 4‐X‐substituted 1,3‐diarylallenes with N‐methylindole in the presence of catalyst 4c [(AuCl)2( L3 )] / AgOTf [ L3 =(S)‐(−)‐MeO‐biphep], determined through competition experiments, correlate (r2=0.996) with the substituent constants σ. The slope value is −2.30, revealing both the build‐up of positive charge at the allene and electrophilic nature of the reactive AuI species. Two plausible reaction pathways were investigated by density functional theory calculations, one pathway involving intermolecular nucleophilic addition of free indole to aurated allene intermediate and another pathway involving intramolecular nucleophilic addition of aurated indole to allene via diaurated intermediate E2 . Calculated results revealed that the reaction likely proceeds via the first pathway with a lower activation energy. The role of AuI AuI interactions in affecting the enantioselectivity is discussed.  相似文献   
998.
A detailed theoretical study on the reaction mechanisms for the formations of H2O2 + 3O2 from the self-reaction of HO2 radicals under the effect of NH3, H3N···H2O, and H2SO4 catalysts was performed using the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ method. The rate constant was computed using canonical variational transition state theory (CVT) with small curvature tunneling (SCT). Our results indicate that NH3-, H3N···H2O-, and H2SO4-catalyzed reactions could proceed through both one-step and stepwise routes. Calculated rate constants show that the catalyzed routes in the presence of the three catalysts all prefer stepwise pathways. Compared to the catalytic efficiency of H2O, the efficiencies of NH3, H3N···H2O, and H2SO4 are much lower due to their smaller relative concentrations. The present results have provided a definitive example of how basic and acidic catalysts influence the atmospheric reaction of HO2 + HO2 → H2O2 + 3O2. These results further encourage one to consider the effects of basic and acidic catalysts on the related atmospheric reactions. Thus, the present investigation should have broad implications in the gas-phase reactions of the atmosphere.  相似文献   
999.
Hexamethyldisiloxane [HMDSO, (CH3)3-SiOSi-(CH3)3] is an important precursor for SiO2 formation during flame-based silica material synthesis. As a result, HMDSO reactions in flame have been widely investigated experimentally, and many results have indicated that HMDSO decomposition reactions occur very early in this process. In this paper, quantum chemical calculations are performed to identify the initial decomposition of HMDSO and its subsequent reactions using the density functional theory at the level of B3LYP/6-311+G (d, p). Four reaction pathways—(a) Si O bond dissociation of HMDSO, (b) Si C bond dissociation of HMDSO, (c) dissociation and recombination of Si O and Si C bonds, and (d) elimination of a methane molecule from HMDSO—have been examined and identified. From the results, it is found that the barrier of 84.38 kcal/mol and Si O bond dissociation energy of 21.55 kcal/mol are required for the initial decomposition reaction of HMDSO in the first pathway, but the highest free energy barrier (100.69 kcal/mol) is found in the third reaction pathway. By comparing the free energy barriers and reaction rate constants, it is concluded that the most possible initial decomposition reaction of HMDSO is to eliminate the CH3 radical by Si C bond dissociation.  相似文献   
1000.
The iridium complexes of chiral spiro aminophophine ligands, especially the ligand with 3,5‐di‐tert‐butylphenyl groups on the P atom ( 1c ) were demonstrated to be highly efficient catalysts for the asymmetric hydrogenation of alkyl aryl ketones. In the presence of KOtBu as a base and under mild reaction conditions, a series of chiral alcohols were synthesized in up to 97 % ee with high turnover number (TON up to 10 000) and high turnover frequency (TOF up to 3.7×104 h−1). Investigation on the structures of the iridium complexes of ligands (R)‐ 1a and 1c by X‐ray analyses disclosed that the 3,5‐di‐tert‐butyl groups on the P‐phenyl rings of the ligand are the key factor for achieving high activity and enantioselectivity of the catalyst. Study of the catalysts generated from the Ir‐(R)‐ 1c complex and H2 by means of ESI‐MS and NMR spectroscopy indicated that the early formed iridium dihydride complex with one (R)‐ 1c ligand was the active species, which was slowly transformed into an inactive iridium dihydride complex with two (R)‐ 1c ligands. A plausible mechanism for the reaction was also suggested to explain the observations of the hydrogenation reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号